Coal preparation

Pulverizers
Unit 17

3.1 Types of PF Systems

1. Direct fired system (commonly used)
2. Semi-direct system (occasionally used)
3. Storage systems (rarely used)
3.1.2 Storage system

Coal preparation train

1.1 Hammer Mill

- A set of hammer hits the coal to crush lump coal to smaller pieces

1.2 Drag Link Feeder
(feeds crushed coal to mill)
2.1 Ball or Tube Mill

- Suitable for hard abrasive coal

2.0 Types of pulverizing mills

1. Ball Mills (Tube Mills)
2. Vertical roller Mills (Bowl & Race Mill)
3. Impact (rarely used) (Beater/ Hammer)

3.2 Coal-pipe –Burner arrangement
(conveys coal from mill to furnace)

2.1 Ball Mills
(steel balls rotates in a drum with coal)
Coal properties affecting pulverization

a) Coal fineness.
Coal should have a minimum amount of both coarse and a fines.

b) Grindability
Hardgrove grindability index is the amount of coal that can be ground in a test mill to specified fineness consuming specified power.

c) Moisture
It agglomerates the fines. So, sufficient hot air is necessary for a mill.

d) Abrasiveness
Abrasiveness index determines the mill wear during grinding.

Fineness requirement depends on coal type

<table>
<thead>
<tr>
<th>Fuel</th>
<th>High rank coal (% below 74 micron)</th>
<th>Low rank coal (% below 74 micron)</th>
<th>Fixed carbon %</th>
<th>Heating value, kJ/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>98-86</td>
<td>85.9-78</td>
<td>77.9-69</td>
<td>>30240</td>
</tr>
<tr>
<td>Water-cooled furnace</td>
<td>80</td>
<td>75</td>
<td>70</td>
<td>65</td>
</tr>
<tr>
<td>Cement kiln</td>
<td>90</td>
<td>85</td>
<td>80</td>
<td>80</td>
</tr>
</tbody>
</table>
Mill Characteristics

Mill output reduces with increasing moisture and fineness.

Conveying air temperature T_2

The amount depends on moisture content & temperature. (air velocity in burner tube ~15-20 m/s)

Maximum temperature of drying air at mill inlet, T_i

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Anthracite</th>
<th>Sub-Bitum</th>
<th>Brown coal</th>
<th>Bituminous</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hot air dry</td>
<td>Fuel drying</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inlet temp.</td>
<td>380-430</td>
<td>330-380</td>
<td>350-380</td>
<td>300-350</td>
</tr>
</tbody>
</table>

The drying air should not be too hot to cause premature ignition of coal fines. Reactive coal ignites at a lower temperature than less reactive coal. This sets the temperature limit.

Maximum temperature of Conveying air at mill exit

Conveying air should be warm enough to avoid condensation of moisture but also avoid self ignition.

<table>
<thead>
<tr>
<th>System</th>
<th>Storage</th>
<th>direct</th>
<th>Semi-direct</th>
</tr>
</thead>
<tbody>
<tr>
<td>High rank, high VM Bit.</td>
<td>54</td>
<td>77</td>
<td>77</td>
</tr>
<tr>
<td>Low-rank, High VM Bit.</td>
<td>54</td>
<td>71</td>
<td>71</td>
</tr>
<tr>
<td>High-rank, Low VM Bit.</td>
<td>57</td>
<td>82</td>
<td>82</td>
</tr>
<tr>
<td>Lignite</td>
<td>43</td>
<td>43-60</td>
<td>49-60</td>
</tr>
<tr>
<td>Anthracite</td>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petroleum coke delayed</td>
<td>57</td>
<td>82-93</td>
<td>82-92</td>
</tr>
</tbody>
</table>
Design of Pulverizing system

1. Select the type of storage system (Direct, Semi-direct, Storage)
2. Select type of pulverizer (Tube Mill, Vertical spindle, Impact Mill)
3. Choose capacity & number of pulverizer
4. Calculate air flow & air temperature
5. Select fan & design air-pipe system
6. Select coal feeder to suit the pulverizer
7. Select coal crusher
8. Design coal bunker

Heat balance

- Heat given by drying air, M_a is $H_a = M_a(T_i - T_o) C_p$
- Heat absorbed by the coal = H_c
 where M_d dry coal feed, M_m moisture with feed and Re_m fraction of the moisture removed
- $H_a = H_c = M_a(T_i - T_o) C_p = M_d(T_o - T_{rc}) C_c + M_m(T_o - T_{rc}) C_m + M_m Re_m L_m$
- Hot air is a product of preheated air and cold air
 $(T_i - T_{pre}) = R_h(T_{pre} - T_o)$
where R_h is fraction of preheated air in the mixture